Skip to main content
Statistics
STAT
Statistics
Study
Prospective Students
Current Students
Research
Research Areas
Research Groups
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Administrative Staff
Alumni
Students
News
Events
History
Al-Kindi
Al-Kindi Distinguished Statistics Lectures
Al-Kindi Student Awards
About
CEMSE Division
Apply
computational Complexity
On Optimal Regularization in Estimation, Detection, and Classification
Tareq Al-Naffouri, Professor, Electrical and Computer Engineering
Apr 30, 12:00
-
13:00
KAUST
linear systems
computational Complexity
Convex Gaussian Min-max theorem
In many problems in statistical signal processing, regularization is employed to deal with uncertainty, ill-posedness, and insufficiency of training data. It is possible to tune these regularizers optimally asymptotically, i.e. when the dimension of the problem becomes very large, by using tools from random matrix theory and Gauss Process Theory. In this talk, we demonstrate the optimal turning of regularization for three problems : i) Regularized least squares for solving ill-posed and/or uncertain linear systems, 2) Regularized least squares for signal detection in multiple antenna communication systems and 3) Regularized linear and quadratic discriminant binary classifiers.