Skip to main content
King Abdullah University of Science and Technology
Statistics
STAT
Statistics
  • Study
    • Prospective Students
    • Current Students
  • Research
    • Research Areas
    • Research Groups
  • People
    • All People
    • Faculty
    • Affiliate Faculty
    • Instructional Faculty
    • Research Scientists
    • Research Staff
    • Postdoctoral Fellows
    • Administrative Staff
    • Alumni
    • Students
  • News
  • Events
  • History
  • Al-Kindi
    • Al-Kindi Distinguished Statistics Lectures
    • Al-Kindi Student Awards
  • About
  • CEMSE Division
  • Apply

Neural Networks

Mohammed A Shukri

Consultant (former), King Abdullah University of Science and Technology

Neural Networks AI Python BLE communication

Technical Consultant at KAUST (King Abdullah University of Science and Technology).

Principled Scaling of Deep Neural Networks

Soufiane Hayou, Postdoc, Simons Institute, UC Berkeley

Feb 26, 09:00 - 10:00

B9 L4 R4225

Neural Networks

Neural networks have achieved impressive performance in many applications such as image and speech recognition and generation. State-of-the-art performance is usually achieved via a series of engineered modifications to existing neural architectures and their training procedures. However, a common feature of these systems is their large-scale nature: modern neural networks usually contain Billions - if not 10's of Billions - of trainable parameters, and empirical evaluations (generally) support the claim that increasing the scale of neural networks (e.g. width and depth) boosts the model performance if done correctly. However, given a neural network model, it is not straightforward to address the crucial question `how do we scale the network?'. In this talk, I will show how we can leverage different mathematical results to efficiently scale neural networks, with empirically confirmed benefits.

Statistics (STAT)

Footer

  • A-Z Directory
    • All Content
    • Browse Related Sites
  • Site Management
    • Log in

© 2024 King Abdullah University of Science and Technology. All rights reserved. Privacy Notice