Skip to main content
Statistics
STAT
Statistics
Study
Prospective Students
Current Students
Research
Research Areas
Research Groups
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Administrative Staff
Alumni
Students
News
Events
History
Al-Kindi
Al-Kindi Distinguished Statistics Lectures
Al-Kindi Student Awards
About
CEMSE Division
Apply
spatial modulation
Estimating High-Resolution Red Sea Surface Temperature Hotspots, Using a Low-Rank Semiparametric Spatial Model
Arnab Hazra, Postdoctoral Research Fellow, Statistics
Sep 17, 12:00
-
13:00
KAUST
High Resolution X-ray Diffraction
spatial modulation
In this work, we estimate extreme sea surface temperature (SST) hotspots, i.e., high threshold exceedance regions, for the Red Sea, a vital region of high biodiversity. We analyze high-resolution satellite-derived SST data comprising daily measurements at 16703 grid cells across the Red Sea over the period 1985–2015. We propose a semiparametric Bayesian spatial mixed-effects linear model with a flexible mean structure to capture spatially-varying trend and seasonality, while the residual spatial variability is modeled through a Dirichlet process mixture (DPM) of low-rank spatial Student-t processes (LTPs). By specifying cluster-specific parameters for each LTP mixture component, the bulk of the SST residuals influence tail inference and hotspot estimation only moderately. Our proposed model has a nonstationary mean, covariance and tail dependence, and posterior inference can be drawn efficiently through Gibbs sampling. In our application, we show that the proposed method outperforms some natural parametric and semiparametric alternatives.